Managing Dependencies
with Composer

T -

-
o T - | | ~
- " 1o e -
- -—

pDeau.lo

——— I

HFCOMPOSEr

00K for simensen and say nhi’

freenode IRC

. .

dflydev.com .

refixlabsinc.com @reflxlabs

Q!
REFLX Labs

Oo % Oo . I 00
. > ‘oSO .O O ..5° ? Q o _°

boogio

boogio.com @wearboogio

Dependency
Vlanagement

Dependencles are external
requirements

Managing dependencies for PHP
projects has not always peen trivial

Composer makes dependency
management easier

composer.json

“name”: “acme/my-project”,
“description”: “Acme’s My Project”,
“license”: “MIT",
“require”: {

“silex/silex”: “1.1.*"
o

“autoload”: {
“psr-47: {
“Acme\\MyProject\\": “src”
}

}
h

“name”: "“acme/my-project”,
“description”: “Acme’s My Project”,
“License”: “MIT"”,
“require”: {

“silex/silex”: “1.1.*"
}
“autoload”: {

“psr-47: {

“Acme\\MyProject\\": “src”
}

}
h

vendor-name/project-name

A package's name cannot change and must be all lowercase

Vendor name should pe unigue to
the developer, project, or company

“name”: “acme/my-project”,
“description”: “Acme’s My Project”,
“license”: “MIT",
“require”: {
“silex/silex”: “1.1.*"
}
“autoload”: {
“psr-4": {
“Acme\\MyProject\\": “src”
}
}
}

“name”: “acme/my-project”,
“description”: “Acme’s My Project”,
“license”: “MIT",
“require”: {

“silex/silex”: “1.1.*"
}

“autoload”: {

“psr-4": {
“Acme\\MyProject\\"”: “src”

}

}
h

$ composer 1nstall
Loading composer repositories with package information
Installing dependencies (including require-dev)

- Installing psr/log ()
- Installing symfony/routing ()
- Installing symfony/debug ()
- Installing symfony/http-foundation ()
- Installing symfony/event-dispatcher ()
- Installing symfony/http-kernel ()
- Installing pimple/pimple ()
Installing silex/silex ()

ertlng lock file
Generating autoload files

$

Ihe adepenadencies are Installed Into
a directory named vendor

By all means, learn apout vendor
and wnat happens In there, but
aon't obsess.

't isn't (usually) that important.

require “vendor/autoload.php”;

Autoloading

d

require “../vendor/whizbang/classes.php”;

$service = new Acme\WhizBang\Thing()

Autoloading your classes means
yYOU can |ust use them

$user = new Acmel\User();

- autoload

since 5

The autoload function Is called

anytime a class aoes not exist

function autoload($class) {
1f ($class === "Acme\\Account\\User") {

require _ DIR ."/src/user.inc";

The major limitation of autoloac
s that it Is only one function

spl autoload register

since 5.1.2

With spl_autoload register more
than one autoloader implementation
can pbe registeread at the same time

spl autoload register(

Acme: :autoloader

) ;
spl autoload register(

Doctrine: :autoloader

) ;
spl autoload register(function($class) {

1f ($class === "Acme\\RarelyUsed\\User") {
require DIR ."/src/user.inc";
}

});

require
require
require
require

dd

dd

dd

dd

../vendor/whizbang/bootstrap.php”;
../vendor/awesomesoft/bootstrap.php”;
../vendor/lessawesome/bootstrapper.php”;
../vendor/ultraframework/classloader.php”;

LessAwesome\BootStrapper: :register();

UltraFramework\ClassLoader: :register(array(
“N\Acme\\MyApp\\" = “../src”

)) ;

Composer is a configurable
autoloader

Each Composer package gets
to configure its own rules

require “vendor/autoload.php”;

PICK an autoloading strategy ano
configure Composer to use it

PHP-FIG

PHP Framework Interoperability Group

php-fig.com

'For sufficiently vague definitions of ‘accepted’,
May 2009 is the date | use.’

—Larry Garfield

Namespaces are directories

Classes are files with .php suffix

Acme\Account\User

Acme/Account/User.php

PSR-0 also supports legacy
PEAR style naming conventions

Acme\Account\User

ACcme Account User

Acme/Account/User.php

Acme/Account/User.php

|_egacy rules are kKinaa
convoluted

IS converted to /

put only In the class hame

Acme\Web Site\User Controller

Acme/Web Site/User/Controller.php

PSR-0 had a handful of other
relatively insignificant™ issues

* the significance of the issues varies wildly depending on who you ask

1

"autoload": {
||psr_9||: {
"Acme\\Account\\": "src”
}

}
}

new Acme\Account\User():

1

"autoload": {
||psr_9||: {
"Acme Account ": "src’
}

}
}

new Acme Account User();

PHP-FIG

PHP Framework Interoperability Group

php-fig.com

Accepted December 3rad, 2013

Very similar to PSR-0

Only supports namespaces
SO N0 PEAR style naming

INntroduces a namespace prefix
and base directory for mapping

Reduces the number of directories
that are required to exist

Acme\Account\User
Acme\Account
SIC

src/User.php

1

"autoload": {
||psr_4||: {
"Acme\\Account\\": "src”
}

}
}

new Acme\Account\User():

Composer currently recommends
new projects use PSR-4

Migrate from PSR-0 to PSR-4

1

"autoload": {
||psr._0||: {
"Acme\\Account\\": "src"
}

}
}

new Acme\Account\User():

1

"autoload": {
"psr-4": {
"Acme\\Account\\": "src/Acme/Account”
}

}
}

new Acme\Account\User():

Explicitly include specific files

1

“autoload”: {
“files”: |
“src/foo.class.php”,
“src/bar.class.php”

]

}
}

1

“autoload”: {
“files”: [“src/functions.php”]

}
}

1

“autoload”: {
“files”: [“src/autoload.php”]

}
}

The f1les autoloader is really
an alwaysloader

fi1les are included right when
vendor/autoload.phpis

classmap

A key => value map of class
names to files on disk

't will look inside .php and .1ncC
files to find classes

I'he classmap Is generated anytime
Composer dumps its autoloader

Extremely fast and powerful but
not super developer friendly

1

“autoload”: {
“classmap”: |
“src/includes/",
“resources/config.php”

]

}
}

“name”: “acme/my-project”,
“description”: “Acme’s My Project”,
“license”: “MIT",
“require”: {

“silex/silex”: “1.1.*"
}

“autoload”: {

“psr-4": {
“Acme\\MyProject\\"”: “src”

}

}
h

“name”: “acme/my-project”,
“description”: “Acme’s My Project”,
“license”: “MIT",
“require”: {
“silex/silex”: “1.1.*"
}
“autoload”: {
“psr-4": {
“Acme\\MyProject\\": “src”
}
}
}

Versioning

Pretty much anything can be
used as a Composer version

f you want to leverage Composer to
ts fullest use Semantic Versioning

Semantic Versioning

semver.org

MAJOR.MINOR.PATCH

Which number do you increment and why*

MAJOR

When you break backwards compatipility

MINOR

When you add backwards compatible features

PATCH

When you make backwards compatible bug fixes

Pre-Release |dentitiers

Composer calls this "stability"

1.0.0-alpha

@alpha

1.0.0-beta.’
@beta

1.0.0

(stable)

Version Constraints

Exact Versions
1.0.7

Ranges
>=1.0.2,<2.0

wWildcards

1.0.7

Next Significant Release
Tilde Operator

Next Significant Release
~1.2

Next Significant Release
~1.2.3

Semantic Versioning let's
YOU KNOW what you are
getting Into

Reasonably Safe
1.7

Crazy sauce

Stability and the Root Package

Stability is controlled by the
'00t package

Even If your package requires
something @dev, users of your
package won't get @dev unless
they explicitly ask for it

The root package Is defined In
the working composer. json

“require”: {
“silex/silex”: “~1.1@dev”,
“symfony/http-foundation”: “@beta”

b

“minimum-stability”: “alpha”

A package Is only a root package
when It Is being developed

-

.

{

}

“name”: “silex/silex”,
“require”: {

}

“pimple/pimple”: “1.*@dev”

“name”: “dflydev/doctrine-orm-service-provider”,
“require”: {

“pimple/pimple”: “1.*@beta”,

“silex/silex”: “1.1.*",

“doctrine/orm”: “~2.3"

}

“name”: “silex/silex”,
“require”: {
“pimple/pimple”: “1.*@dev”
}
}

“require”: {
“dflydev/doctrine-orm-service-provider”: “1.0.*",

“pimple/pimple”: “1.0.*"”
}

“name”: “dflydev/doctrine-orm-service-provider”,
“require”: {

“pimple/pimple”: “1.*@beta”,

“silex/silex”: “1.1.*",

“doctrine/orm”: “~2.3"

}

“name”: “silex/silex”,
“require”: {
“pimple/pimple”: “1.*@dev”
}
}

Version Constraint Considerations

‘It the dependency specifications are too tight, you are in danger
of version lock (the inability to upgrade a package without having
to release new versions of every dependent package).”

—Semantic Versioning

‘It dependencies are specified too loosely, you will inevitably
be bitten by version promiscuity (assuming compatibility with
more future versions than is reasonable).”

—Semantic Versioning

_ibraries should generally have
more permissive constraints

=Nd projects may want to have
more restrictive constraints

VCS Repositories

Any VCS repository can be treateo
Ike a Composer package

GitHub

Composer treats tags as
versions for VCS repositories

lags anad Versions

f a tag can be parsed as
semver, awesome!

f It cannot be parsed as semver, it
S treated as an "exact’ version

v2.0.1

2.0.7

2.0.1

2.0.7

2.0.1-RC1

2.0.10

2.0.10Q

3.4-cuaaly-cat

3.4-cuadly-cat

Branches and Versions

Composer treats branches as
@dev stability versions

Numpbered branches are treateo
as development versions

2.0

2.0.x-dev

Named branches detault to their
name with a dev- prefix

master

dev-master

testing

aev-testing

2.0-experimental

dev-2.0-experimental

Namedq branches can be allased
to be semver triendly

1

“extra”: {
“branch-alias”: {
“dev-master”: “2.0.x-dev”

}
h
}

master

dev-master / 2.0.x-dev

dev-master
considered
harmiul

“When starting a new library that is to be distributed via
Packagist / Composer, be SURE to set up your dev-
master branch alias.”

—Don Gilbert

https://twitter.com/dilbertdlite/status/380137097614458881

Publishing ano
piscovery

' Packagist
The PHP package archivist.

packagist.org

Publisning IS as easy as pasting
your repositories GitHub URL

“name”: "“acme/my-project”,
“description”: “Acme’s My Project”,
“License”: “MIT"”,
“require”: {

“silex/silex”: “1.1.*"
}
“autoload”: {

“psr-47: {

“Acme\\MyProject\\": “src”
}

}
h

Discovery IS as easy as typing
sometning Into the search DoOX

Over 23,600 packages

Check Packagist betore you
start a new library from scratch

Basic Usage

Install Composer

getcomposer.org/downloac

$ curl -sS https://getcomposer.org/installer | php

$ php composer.phar --version

WARNING

Security people think this is bad, but it is all the rage

$ chmod /55 composer.phar
$ mv composer.phar ~/bin/composer

$ composer --version

composer.json and composer. Lock

composer.json describes a
package and Its dependencies

“name”: “acme/my-project”,
“description”: “Acme’s My Project”,
“license”: “MIT",
“require”: {

“silex/silex”: “1.1.*"
o

“autoload”: {
“psr-47: {
“Acme\\MyProject\\": “src”
}

}
h

composer. Lock describes
exactly what should be installed

composer. Lock is not meant for
Nnteractions with humans

Check your composer. Lock into
VYOur repository

Common Commands

$ composer 1nstall

If composer. Lock exists, install exactly what is in the lock file.

Otherwise, read composer. json to find out what should be installed,
install the dependencies, and write out composer. Lock.

$ composer update

Installs dependencies from composer. json
and creates or updates composer. Lock.

$ composer require [pkg]

Add a package to composer. json.

The [pkg] is the name with a version constraint.

foo/bar:1.0.0 or foo/bar=1.0.0or "foo/bar 1.0.0"

$ composer diag

Check environment and composer. json for common errors

$ composer valildate

Check composer. json for common errors

Hcomposer

Autoload your classes

Use Semantic Versioning

Devs don't let devs aev-master

Search Packagist first

Puplisn your code on Packagist

Questions?

@beausimensen

ddd.io/ssp14-composer

