
Managing Dependencies
with Composer

Sunshine PHP
February 8th, 2014

Beau Simensen
@beausimensen

beau.io

#composer
look for simensen and say "hi"

freenode IRC

Dragonfly Development
@dflydev

dflydev.com

boogio.com @wearboogio

reflxlabsinc.com @reflxlabs

Dependency
Management

Dependencies are external
requirements

Managing dependencies for PHP
projects has not always been trivial

Composer makes dependency
management easier

composer.json

{
 “name”: “acme/my-project”,
 “description”: “Acme’s My Project”,
 “license”: “MIT”,
 “require”: {
 “silex/silex”: “1.1.*”
 },
 “autoload”: {
 “psr-4”: {
 “Acme\\MyProject\\”: “src”
 }
 }
}

{
 “name”: “acme/my-project”,
 “description”: “Acme’s My Project”,
 “license”: “MIT”,
 “require”: {
 “silex/silex”: “1.1.*”
 },
 “autoload”: {
 “psr-4”: {
 “Acme\\MyProject\\”: “src”
 }
 }
}

vendor-name/project-name
A package's name cannot change and must be all lowercase

Vendor name should be unique to
the developer, project, or company

{
 “name”: “acme/my-project”,
 “description”: “Acme’s My Project”,
 “license”: “MIT”,
 “require”: {
 “silex/silex”: “1.1.*”
 },
 “autoload”: {
 “psr-4”: {
 “Acme\\MyProject\\”: “src”
 }
 }
}

{
 “name”: “acme/my-project”,
 “description”: “Acme’s My Project”,
 “license”: “MIT”,
 “require”: {
 “silex/silex”: “1.1.*”
 },
 “autoload”: {
 “psr-4”: {
 “Acme\\MyProject\\”: “src”
 }
 }
}

$ composer install
Loading composer repositories with package information
Installing dependencies (including require-dev)
 - Installing psr/log (1.0.0)
 - Installing symfony/routing (v2.3.7)
 - Installing symfony/debug (v2.3.7)
 - Installing symfony/http-foundation (v2.3.7)
 - Installing symfony/event-dispatcher (v2.3.7)
 - Installing symfony/http-kernel (v2.3.7)
 - Installing pimple/pimple (v1.1.0)
 - Installing silex/silex (v1.1.2)
Writing lock file
Generating autoload files
$

The dependencies are installed into
a directory named vendor

vendor =

By all means, learn about vendor
and what happens in there, but

don't obsess.
!

It isn't (usually) that important.

require “vendor/autoload.php”;

Autoloading

//
// life without autoloading
//
!

require “../vendor/whizbang/classes.php”;
!

$service = new Acme\WhizBang\Thing()

Autoloading your classes means
you can just use them

Acme\User is not defined
!

$user = new Acme\User();
!

Acme\User is defined

__autoload

since 5

The __autoload function is called
anytime a class does not exist

function __autoload($class) {
 if ($class === "Acme\\Account\\User") {
 // do something to cause this class
 // to become defined
 require __DIR__."/src/user.inc";
 }
}

The major limitation of __autoload
is that it is only one function

spl_autoload_register

since 5.1.2

With spl_autoload_register more
than one autoloader implementation
can be registered at the same time

spl_autoload_register(
 // Registers Acme's autoloader
 Acme::autoloader
);

spl_autoload_register(
 // Registers Doctrine's autoloader
 Doctrine::autoloader
);

spl_autoload_register(function($class) {
 // Register a rarely used class
 if ($class === "Acme\\RarelyUsed\\User") {
 require __DIR__."/src/user.inc";
 }
});

// this allowed projects to ship autoloaders with
// their packages so they could be easily enabled
!

require “../vendor/whizbang/bootstrap.php”;
require “../vendor/awesomesoft/bootstrap.php”;
require “../vendor/lessawesome/bootstrapper.php”;
require “../vendor/ultraframework/classloader.php”;
!

LessAwesome\BootStrapper::register();
!

UltraFramework\ClassLoader::register(array(
 “\\Acme\\MyApp\\” = “../src”
));

Composer is a configurable
autoloader

Each Composer package gets
to configure its own rules

require “vendor/autoload.php”;

Pick an autoloading strategy and
configure Composer to use it

psr-0

PHP-FIG
PHP Framework Interoperability Group

php-fig.com

–Larry Garfield

"For sufficiently vague definitions of 'accepted',
May 2009 is the date I use."

Namespaces are directories

Classes are files with .php suffix

Acme\Account\User

Acme/Account/User.php

PSR-0 also supports legacy
PEAR style naming conventions

Acme\Account\User
!

Acme_Account_User

Acme/Account/User.php
!

Acme/Account/User.php

Legacy rules are kinda
convoluted

_ is converted to /
but only in the class name

Acme\Web_Site\User_Controller

Acme/Web_Site/User/Controller.php

PSR-0 had a handful of other
relatively insignificant* issues

* the significance of the issues varies wildly depending on who you ask

{
 "autoload": {
 "psr-0": {
 "Acme\\Account\\": "src"
 }
 }
}
!

new Acme\Account\User();
!

src/Acme/Account/User.php

{
 "autoload": {
 "psr-0": {
 "Acme_Account_": "src"
 }
 }
}
!

new Acme_Account_User();
!

src/Acme/Account/User.php

psr-4

PHP-FIG
PHP Framework Interoperability Group

php-fig.com

Accepted December 3rd, 2013

Finally!

Very similar to PSR-0

Only supports namespaces
so no PEAR style naming

Introduces a namespace prefix
and base directory for mapping

Reduces the number of directories
that are required to exist

Acme\Account\User (class)
!

Acme\Account (namespace prefix)
!

src (base directory)
!

src/User.php (resulting file path)

{
 "autoload": {
 "psr-4": {
 "Acme\\Account\\": "src"
 }
 }
}
!

new Acme\Account\User();
!

src/User.php

Composer currently recommends
new projects use PSR-4

Migrate from PSR-0 to PSR-4

{
 "autoload": {
 "psr-0": {
 "Acme\\Account\\": "src"
 }
 }
}
!

new Acme\Account\User();
!

src/Acme/Account/User.php

{
 "autoload": {
 "psr-4": {
 "Acme\\Account\\": "src/Acme/Account"
 }
 }
}
!

new Acme\Account\User();
!

src/Acme/Account/User.php

files

Explicitly include specific files

{
 “autoload”: {
 “files”: [
 “src/foo.class.php”,
 “src/bar.class.php”
]
 }
}

{
 “autoload”: {
 “files”: [“src/functions.php”]
 }
}

{
 “autoload”: {
 “files”: [“src/autoload.php”]
 }
}

The files autoloader is really
an alwaysloader

files are included right when
vendor/autoload.php is

classmap

A key => value map of class
names to files on disk

It will look inside .php and .inc
files to find classes

The classmap is generated anytime
Composer dumps its autoloader

Extremely fast and powerful but
not super developer friendly

{
 “autoload”: {
 “classmap”: [
 “src/includes/”,
 “resources/config.php”
]
 }
}

{
 “name”: “acme/my-project”,
 “description”: “Acme’s My Project”,
 “license”: “MIT”,
 “require”: {
 “silex/silex”: “1.1.*”
 },
 “autoload”: {
 “psr-4”: {
 “Acme\\MyProject\\”: “src”
 }
 }
}

{
 “name”: “acme/my-project”,
 “description”: “Acme’s My Project”,
 “license”: “MIT”,
 “require”: {
 “silex/silex”: “1.1.*”
 },
 “autoload”: {
 “psr-4”: {
 “Acme\\MyProject\\”: “src”
 }
 }
}

Versioning

Pretty much anything can be
used as a Composer version

If you want to leverage Composer to
its fullest use Semantic Versioning

Semantic Versioning

semver.org

MAJOR.MINOR.PATCH
Which number do you increment and why?

MAJOR.MINOR.PATCH
When you break backwards compatibility

MAJOR.MINOR.PATCH
When you add backwards compatible features

MAJOR.MINOR.PATCH
When you make backwards compatible bug fixes

Pre-Release Identifiers
Composer calls this "stability"

1.0.0-alpha
@alpha

1.0.0-beta.1
@beta

1.0.0-RC2
@RC

1.0.0
(stable)

Version Constraints

Exact Versions
1.0.2

Ranges
>=1.0.2,<2.0

Wildcards
1.0.*

Next Significant Release
Tilde Operator

Next Significant Release
~1.2

>=1.2,<2.0

Next Significant Release
~1.2.3

>=1.2.3,<1.3

Semantic Versioning let's
you know what you are

getting into

Safe
1.3.*

Only get bug fixes

Reasonably Safe
1.*

Get bug fixes and new features

Crazy sauce
*

Composer allows this, but don't.
Just dont.

Stability and the Root Package

Stability is controlled by the
root package

Even if your package requires
something @dev, users of your
package won't get @dev unless

they explicitly ask for it

The root package is defined in
the working composer.json

{
 “require”: {
 “silex/silex”: “~1.1@dev”,
 “symfony/http-foundation”: “@beta”
 },
 “minimum-stability”: “alpha”
}

A package is only a root package
when it is being developed

{
 “name”: “silex/silex”,
 “require”: {
 “pimple/pimple”: “1.*@dev”
 }
}

{
 “name”: “silex/silex”,
 “require”: {
 “pimple/pimple”: “1.*@dev”
 }
}

{
 “name”: “dflydev/doctrine-orm-service-provider”,
 “require”: {
 “pimple/pimple”: “1.*@beta”,
 “silex/silex”: “1.1.*”,
 “doctrine/orm”: “~2.3”
 }
}

{
 “name”: “silex/silex”,
 “require”: {
 “pimple/pimple”: “1.*@dev”
 }
}

{
 “name”: “dflydev/doctrine-orm-service-provider”,
 “require”: {
 “pimple/pimple”: “1.*@beta”,
 “silex/silex”: “1.1.*”,
 “doctrine/orm”: “~2.3”
 }
}

{
 “require”: {
 “dflydev/doctrine-orm-service-provider”: “1.0.*”,
!
 “pimple/pimple”: “1.0.*”
 }
}

Version Constraint Considerations

–Semantic Versioning

“If the dependency specifications are too tight, you are in danger
of version lock (the inability to upgrade a package without having

to release new versions of every dependent package).”

–Semantic Versioning

“If dependencies are specified too loosely, you will inevitably
be bitten by version promiscuity (assuming compatibility with

more future versions than is reasonable).”

Libraries should generally have
more permissive constraints

End projects may want to have
more restrictive constraints

VCS Repositories

Any VCS repository can be treated
like a Composer package

Composer treats tags as
versions for VCS repositories

Tags and Versions

If a tag can be parsed as
semver, awesome!

If it cannot be parsed as semver, it
is treated as an "exact" version

v2.0.1
2.0.1
(2.0.*)

2.0.1
2.0.1
(2.0.*)

2.0.1-RC1
2.0.1-RC1
(2.0.*@RC)

2.0.1g
2.0.1g

(2.0.1g)

3.4-cuddly-cat
3.4-cuddly-cat

(3.4-cuddly-cat)

Branches and Versions

Composer treats branches as
@dev stability versions

Numbered branches are treated
as development versions

2.0
2.0.x-dev

(2.0.*@dev)

Named branches default to their
name with a dev- prefix

master
dev-master

(dev-master)

testing
dev-testing

(dev-testing)

2.0-experimental
dev-2.0-experimental

(2.0.*@dev won't work!)

Named branches can be aliased
to be semver friendly

{
 “extra”: {
 “branch-alias”: {
 “dev-master”: “2.0.x-dev”
 }
 }
}

master
dev-master / 2.0.x-dev

(dev-master or 2.0.*@dev)

dev-master
considered

harmful

–Don Gilbert

“When starting a new library that is to be distributed via
Packagist / Composer, be SURE to set up your dev-

master branch alias.”

https://twitter.com/dilbert4life/status/380137097614458881

Publishing and
Discovery

packagist.org

Publishing is as easy as pasting
your repositories GitHub URL

{
 “name”: “acme/my-project”,
 “description”: “Acme’s My Project”,
 “license”: “MIT”,
 “require”: {
 “silex/silex”: “1.1.*”
 },
 “autoload”: {
 “psr-4”: {
 “Acme\\MyProject\\”: “src”
 }
 }
}

Discovery is as easy as typing
something into the search box

Over 23,600 packages

Check Packagist before you
start a new library from scratch

Basic Usage

Install Composer
getcomposer.org/download

$ curl -sS https://getcomposer.org/installer | php

$ php composer.phar --version

WARNING
Security people think this is bad, but it is all the rage

$ chmod 755 composer.phar

$ mv composer.phar ~/bin/composer

$ composer --version

composer.json and composer.lock

composer.json describes a
package and its dependencies

{
 “name”: “acme/my-project”,
 “description”: “Acme’s My Project”,
 “license”: “MIT”,
 “require”: {
 “silex/silex”: “1.1.*”
 },
 “autoload”: {
 “psr-4”: {
 “Acme\\MyProject\\”: “src”
 }
 }
}

composer.lock describes
exactly what should be installed

composer.lock is not meant for
interactions with humans

Check your composer.lock into
your repository

Common Commands

$ composer install
If composer.lock exists, install exactly what is in the lock file.

!

Otherwise, read composer.json to find out what should be installed,
install the dependencies, and write out composer.lock.

$ composer update
Installs dependencies from composer.json

and creates or updates composer.lock.

$ composer require [pkg]
Add a package to composer.json.

!

The [pkg] is the name with a version constraint.
!

foo/bar:1.0.0 or foo/bar=1.0.0 or "foo/bar 1.0.0"

$ composer diag
Check environment and composer.json for common errors

$ composer validate
Check composer.json for common errors

#composer

Autoload your classes

Use Semantic Versioning

Devs don't let devs dev-master

Search Packagist first

Publish your code on Packagist

Questions?
@beausimensen

ddd.io/ssp14-composer

